
PosterChild: Blend-Aware

Artistic Posterization

	Cheng-Kang Ted Chao	 George Mason University

	 Karan Singh University of Toronto

 	Yotam Gingold	 George Mason University

Creativity and Graphics Lab
CraGL

Artistic Posterization

2

Artistic Posterization

2

Artistic Posterization

2

Artistic Posterization

2

Artistic Posterization

2

Saarland University

3

Saarland University

3

Saarland University

3

Saarland University

3

Previous Work: [Xu and Kaplan 2008], [Gerstner et al. 2013], [Afifi 2018]

Problem Statement

4

Problem Statement
• Create a posterized image using a discrete set of colors representing the

input image and also provided convenient handles for recoloring.

• Existing automatic posterization tools produce output quite different from artists.

• Manual approaches are time-consuming.

4

Problem Statement
• Create a posterized image using a discrete set of colors representing the

input image and also provided convenient handles for recoloring.

• Existing automatic posterization tools produce output quite different from artists.

• Manual approaches are time-consuming.

4

Problem Statement
• Create a posterized image using a discrete set of colors representing the

input image and also provided convenient handles for recoloring.

• Existing automatic posterization tools produce output quite different from artists.

• Manual approaches are time-consuming.

4

Photoshop’s Posterization Filter

Problem Statement
• Create a posterized image using a discrete set of colors representing the

input image and also provided convenient handles for recoloring.

• Existing automatic posterization tools produce output quite different from artists.

• Manual approaches are time-consuming.

4

Photoshop’s Posterization Filter

Problem Statement
• Create a posterized image using a discrete set of colors representing the

input image and also provided convenient handles for recoloring.

• Existing automatic posterization tools produce output quite different from artists.

• Manual approaches are time-consuming.

4

Photoshop’s Posterization Filter Artist’s Creation

• Step 1: Choose a color palette

• Step 2: Form approximate solid-color regions

• Step 3: Improve region color blends

• Step 4: Improve region boundaries

Our Approach

5

Our Approach
• Step 1: Convex-hull based palette extraction

• Step 2: Form approximate solid-color regions

• Step 3: Improve region color blends

• Step 4: Improve region boundaries

6

Our Approach
• Step 1: Convex-hull based palette extraction

• Step 2: Form approximate solid-color regions

• Step 3: Improve region color blends

• Step 4: Improve region boundaries

6

Our Approach
• Step 1: Convex-hull based palette extraction

• Step 2: Form approximate solid-color regions

• Step 3: Improve region color blends

• Step 4: Improve region boundaries

6

• Step 1: Choose a color palette

• Step 2: Form approximate solid-color regions

• Step 3: Improve region color blends

• Step 4: Improve region boundaries

Our Approach

7

Our Approach
• Step 1: Choose a color palette

• Step 2: Rough region and color assignment

• Step 3: Improve region color blends

• Step 4: Improve region boundaries

8

Our Approach
• Step 1: Choose a color palette

• Step 2: Rough region and color assignment

• Step 3: Improve region color blends

• Step 4: Improve region boundaries

8

• Step 1: Choose a color palette

• Step 2: Form approximate solid-color regions

• Step 3: Improve region color blends

• Step 4: Improve region boundaries

Our Approach

9

• Step 1: Choose a color palette

• Step 2: Form approximate solid-color regions

• Step 3: Blend refinement

• Step 4: Improve region boundaries

Our Approach

10

• Step 1: Choose a color palette

• Step 2: Form approximate solid-color regions

• Step 3: Blend refinement

• Step 4: Improve region boundaries

Our Approach

10

• Step 1: Choose a color palette

• Step 2: Form approximate solid-color regions

• Step 3: Blend refinement

• Step 4: Improve region boundaries

Our Approach

10

• Step 1: Choose a color palette

• Step 2: Form approximate solid-color regions

• Step 3: Blend refinement

• Step 4: Improve region boundaries

Our Approach

10

• Step 1: Choose a color palette

• Step 2: Form approximate solid-color regions

• Step 3: Blend refinement

• Step 4: Improve region boundaries

Our Approach

10

Our Approach

• Step 1: Choose a color palette

• Step 2: Form approximate solid-color regions

• Step 3: Improve region color blends

• Step 4: Improve region boundaries

11

• Step 1: Choose a color palette

• Step 2: Form approximate solid-color regions

• Step 3: Improve region color blends

• Step 4: Region boundary smoothing

Our Approach

12

• Step 1: Choose a color palette

• Step 2: Form approximate solid-color regions

• Step 3: Improve region color blends

• Step 4: Region boundary smoothing

Our Approach

12

• Step 1: Choose a color palette

• Step 2: Form approximate solid-color regions

• Step 3: Improve region color blends

• Step 4: Region boundary smoothing

Our Approach

12

• Step 1: Choose a color palette

• Step 2: Form approximate solid-color regions

• Step 3: Improve region color blends

• Step 4: Region boundary smoothing

Our Approach

12

Step 1: Convex-hull based palette extraction

13

• Goal: Find a small set of colors to represent the image.

Step 1: Convex-hull based palette extraction

13

• Goal: Find a small set of colors to represent the image.
• Allow blends of any two palette colors.

Step 1: Convex-hull based palette extraction

13

• Goal: Find a small set of colors to represent the image.
• Allow blends of any two palette colors.
• We follow [Tan et al. 2016]’s simplified convex-hull approach.

Step 1: Convex-hull based palette extraction

13

• Goal: Find a small set of colors to represent the image.
• Allow blends of any two palette colors.
• We follow [Tan et al. 2016]’s simplified convex-hull approach.
• Improvement: We use K-means to reduce outlier sensitivity. See paper for

details.

Step 1: Convex-hull based palette extraction

13

• Goal: Find a small set of colors to represent the image.
• Allow blends of any two palette colors.
• We follow [Tan et al. 2016]’s simplified convex-hull approach.
• Improvement: We use K-means to reduce outlier sensitivity. See paper for

details.

Step 1: Convex-hull based palette extraction

13

• Goal: Find a small set of colors to represent the image.
• Allow blends of any two palette colors.
• We follow [Tan et al. 2016]’s simplified convex-hull approach.
• Improvement: We use K-means to reduce outlier sensitivity. See paper for

details.

Step 1: Convex-hull based palette extraction

13

• Goal: Find a small set of colors to represent the image.
• Allow blends of any two palette colors.
• We follow [Tan et al. 2016]’s simplified convex-hull approach.
• Improvement: We use K-means to reduce outlier sensitivity. See paper for

details.

Step 1: Convex-hull based palette extraction

13

• Goal: Find a small set of colors to represent the image.
• Allow blends of any two palette colors.
• We follow [Tan et al. 2016]’s simplified convex-hull approach.
• Improvement: We use K-means to reduce outlier sensitivity. See paper for

details.

Step 1: Convex-hull based palette extraction

13

• Goal: Find a small set of colors to represent the image.
• Allow blends of any two palette colors.
• We follow [Tan et al. 2016]’s simplified convex-hull approach.
• Improvement: We use K-means to reduce outlier sensitivity. See paper for

details.

Step 1: Convex-hull based palette extraction

13

Step 2: Rough region and color assignment

14

Step 2: Rough region and color assignment

14

• Goal: Partition the image into regions that approximate the input () with spatial consistency ().Edata Epairwise

Step 2: Rough region and color assignment

14

• Goal: Partition the image into regions that approximate the input () with spatial consistency ().Edata Epairwise

• penalizes the difference between a pixel’s input color and its region color .Edata Ip Rp

Step 2: Rough region and color assignment

14

• Goal: Partition the image into regions that approximate the input () with spatial consistency ().Edata Epairwise

• penalizes the difference between a pixel’s input color and its region color .Edata Ip Rp

Edata = ∑
p∈I

∥Rp − Ip∥2

Step 2: Rough region and color assignment

14

• Goal: Partition the image into regions that approximate the input () with spatial consistency ().Edata Epairwise

• penalizes the difference between a pixel’s input color and its region color .Edata Ip Rp

Edata = ∑
p∈I

∥Rp − Ip∥2

Step 2: Rough region and color assignment

14

• Goal: Partition the image into regions that approximate the input () with spatial consistency ().Edata Epairwise

• penalizes the difference between a pixel’s input color and its region color .Edata Ip Rp

Edata = ∑
p∈I

∥Rp − Ip∥2

Step 2: Rough region and color assignment

14

• Goal: Partition the image into regions that approximate the input () with spatial consistency ().Edata Epairwise

• penalizes the difference between a pixel’s input color and its region color .Edata Ip Rp

• penalizes neighboring pixels with different region labels and .Epairwise Lp Lq

Edata = ∑
p∈I

∥Rp − Ip∥2

Step 2: Rough region and color assignment

14

• Goal: Partition the image into regions that approximate the input () with spatial consistency ().Edata Epairwise

• penalizes the difference between a pixel’s input color and its region color .Edata Ip Rp

• penalizes neighboring pixels with different region labels and .Epairwise Lp Lq

Edata = ∑
p∈I

∥Rp − Ip∥2

Epairwise = ∑
p,q∈N

∥Lp − Lq∥2

Step 2: Rough region and color assignment

14

• Goal: Partition the image into regions that approximate the input () with spatial consistency ().Edata Epairwise

• penalizes the difference between a pixel’s input color and its region color .Edata Ip Rp

• penalizes neighboring pixels with different region labels and .Epairwise Lp Lq

Edata = ∑
p∈I

∥Rp − Ip∥2

Epairwise = ∑
p,q∈N

∥Lp − Lq∥2

Step 2: Rough region and color assignment

14

• Goal: Partition the image into regions that approximate the input () with spatial consistency ().Edata Epairwise

• penalizes the difference between a pixel’s input color and its region color .Edata Ip Rp

• penalizes neighboring pixels with different region labels and .Epairwise Lp Lq

Edata = ∑
p∈I

∥Rp − Ip∥2

Epairwise = ∑
p,q∈N

∥Lp − Lq∥2

Step 2: Rough region and color assignment

14

• Goal: Partition the image into regions that approximate the input () with spatial consistency ().Edata Epairwise

• penalizes the difference between a pixel’s input color and its region color .Edata Ip Rp

• penalizes neighboring pixels with different region labels and .Epairwise Lp Lq

Edata = ∑
p∈I

∥Rp − Ip∥2

Epairwise = ∑
p,q∈N

∥Lp − Lq∥2

Step 2: Rough region and color assignment

14

• Goal: Partition the image into regions that approximate the input () with spatial consistency ().Edata Epairwise

• penalizes the difference between a pixel’s input color and its region color .Edata Ip Rp

• penalizes neighboring pixels with different region labels and .Epairwise Lp Lq

• Overall objective function: E(f) = Edata(f) + λEpairwise(f)

Edata = ∑
p∈I

∥Rp − Ip∥2

Epairwise = ∑
p,q∈N

∥Lp − Lq∥2

Step 2: Rough region and color assignment

14

• Goal: Partition the image into regions that approximate the input () with spatial consistency ().Edata Epairwise

• penalizes the difference between a pixel’s input color and its region color .Edata Ip Rp

• penalizes neighboring pixels with different region labels and .Epairwise Lp Lq

• Overall objective function: E(f) = Edata(f) + λEpairwise(f)
• controls the clumpiness of the regions in the output.λ

Edata = ∑
p∈I

∥Rp − Ip∥2

Epairwise = ∑
p,q∈N

∥Lp − Lq∥2

Step 2: Rough region and color assignment

14

• Goal: Partition the image into regions that approximate the input () with spatial consistency ().Edata Epairwise

• penalizes the difference between a pixel’s input color and its region color .Edata Ip Rp

• penalizes neighboring pixels with different region labels and .Epairwise Lp Lq

• Overall objective function: E(f) = Edata(f) + λEpairwise(f)
• controls the clumpiness of the regions in the output.λ
• We solve this problem with multi-label optimization [Boykov and Kolmogorov 2001].

Edata = ∑
p∈I

∥Rp − Ip∥2

Epairwise = ∑
p,q∈N

∥Lp − Lq∥2

Step 2: Rough region and color assignment

15

Step 2: Rough region and color assignment

15

Step 2: Rough region and color assignment

15

Step 2: Rough region and color assignment

15

min E(f)

Step 2: Rough region and color assignment

15

min E(f)

Step 2: Rough region and color assignment

15

min E(f)

Step 2: Rough region and color assignment

15

min E(f)

Step 2: Rough region and color assignment

15

min E(f)

Step 2: Rough region and color assignment

16

Step 2: Rough region and color assignment
• Palette colors from palette extraction in step 1.P

16

Step 2: Rough region and color assignment
• Palette colors from palette extraction in step 1.P
• Pairwise blends from palette colors with weights.P

16

Step 2: Rough region and color assignment
• Palette colors from palette extraction in step 1.P
• Pairwise blends from palette colors with weights.P

16

Pi Pj
…d

Step 2: Rough region and color assignment
• Palette colors from palette extraction in step 1.P
• Pairwise blends from palette colors with weights.P

16

Pi Pj
…d

Step 2: Rough region and color assignment
• Palette colors from palette extraction in step 1.P
• Pairwise blends from palette colors with weights.P

16Input

Pi Pj
…d

Step 2: Rough region and color assignment
• Palette colors from palette extraction in step 1.P
• Pairwise blends from palette colors with weights.P

16Input

Pi Pj
…d

Step 2: Rough region and color assignment
• Palette colors from palette extraction in step 1.P
• Pairwise blends from palette colors with weights.P

16Input

Pi Pj
…d

Step 2: Rough region and color assignment
• Palette colors from palette extraction in step 1.P
• Pairwise blends from palette colors with weights.P

16Input d = 0

Pi Pj
…d

Step 2: Rough region and color assignment
• Palette colors from palette extraction in step 1.P
• Pairwise blends from palette colors with weights.P

16Input d = 0

Pi Pj
…d

Step 2: Rough region and color assignment
• Palette colors from palette extraction in step 1.P
• Pairwise blends from palette colors with weights.P

16Input d = 0 d = 1

Pi Pj
…d

Step 2: Rough region and color assignment
• Palette colors from palette extraction in step 1.P
• Pairwise blends from palette colors with weights.P

16Input d = 0 d = 1

Pi Pj
…d

Step 2: Rough region and color assignment
• Palette colors from palette extraction in step 1.P
• Pairwise blends from palette colors with weights.P

16Input d = 0 d = 1 d = 2

Pi Pj
…d

Step 2: Rough region and color assignment
• Palette colors from palette extraction in step 1.P
• Pairwise blends from palette colors with weights.P

16Input d = 0 d = 1 d = 2

Pi Pj
…d

Step 2: Rough region and color assignment
• Palette colors from palette extraction in step 1.P
• Pairwise blends from palette colors with weights.P

16Input d = 0 d = 1 d = 2 d = 3

Pi Pj
…d

Step 2: Rough region and color assignment
• Palette colors from palette extraction in step 1.P
• Pairwise blends from palette colors with weights.P

16Input d = 0 d = 1 d = 2 d = 3

Pi Pj
…d

Step 2: Rough region and color assignment
• Palette colors from palette extraction in step 1.P
• Pairwise blends from palette colors with weights.P

16Input d = 0 d = 1 d = 2 d = 3 d = 4

Pi Pj
…d

Step 3&4: Region Refinement

17

• Step 3: Assign each region a continuous rather than discrete blend.

• Step 4: Smooth region boundaries with a frequency-guided median filter.

• See our paper for details.

Step 3&4: Region Refinement

17

• Step 3: Assign each region a continuous rather than discrete blend.

• Step 4: Smooth region boundaries with a frequency-guided median filter.

• See our paper for details.

Step 3&4: Region Refinement

17

• Step 3: Assign each region a continuous rather than discrete blend.

• Step 4: Smooth region boundaries with a frequency-guided median filter.

• See our paper for details.

Step 3&4: Region Refinement

17

• Step 3: Assign each region a continuous rather than discrete blend.

• Step 4: Smooth region boundaries with a frequency-guided median filter.

• See our paper for details.

Step 3&4: Region Refinement

17

• Step 3: Assign each region a continuous rather than discrete blend.

• Step 4: Smooth region boundaries with a frequency-guided median filter.

• See our paper for details.

Results

18

Results

18

Results

18

Results

18

Results

18

19

19

19

19

19

Evaluation

20

Evaluation

• Comparison to related approaches.

20

Evaluation

• Comparison to related approaches.

20

Input [Afifi 2018] [Xu and Kaplan 2008] Direct K-means

(K=7 in RGB-space)

Direct K-means

(K=44 in RGB-space)

Direct K-means

(K=10 in RGBXY-space)

Ours

Evaluation

• Comparison to related approaches.

20

Input [Afifi 2018] [Xu and Kaplan 2008] Direct K-means

(K=7 in RGB-space)

Direct K-means

(K=44 in RGB-space)

Direct K-means

(K=10 in RGBXY-space)

Ours

Evaluation

• Comparison to related approaches.

20

Input [Afifi 2018] [Xu and Kaplan 2008] Direct K-means

(K=7 in RGB-space)

Direct K-means

(K=44 in RGB-space)

Direct K-means

(K=10 in RGBXY-space)

Ours

Evaluation

• Comparison to related approaches.

20

Input [Afifi 2018] [Xu and Kaplan 2008] Direct K-means

(K=7 in RGB-space)

Direct K-means

(K=44 in RGB-space)

Direct K-means

(K=10 in RGBXY-space)

Ours

Evaluation

• Comparison to related approaches.

20

Input [Afifi 2018] [Xu and Kaplan 2008] Direct K-means

(K=7 in RGB-space)

Direct K-means

(K=44 in RGB-space)

Direct K-means

(K=10 in RGBXY-space)

Ours

(44 colors)

Evaluation

• Comparison to related approaches.

20

Input [Afifi 2018] [Xu and Kaplan 2008] Direct K-means

(K=7 in RGB-space)

Direct K-means

(K=44 in RGB-space)

Direct K-means

(K=10 in RGBXY-space)

Ours

(44 colors)

Evaluation

• Comparison to related approaches.
• Expert study with professional artists.

20

Input [Afifi 2018] [Xu and Kaplan 2008] Direct K-means

(K=7 in RGB-space)

Direct K-means

(K=44 in RGB-space)

Direct K-means

(K=10 in RGBXY-space)

Ours

(44 colors)

Evaluation

• Comparison to related approaches.
• Expert study with professional artists.

20

Input [Afifi 2018] [Xu and Kaplan 2008] Direct K-means

(K=7 in RGB-space)

Direct K-means

(K=44 in RGB-space)

Direct K-means

(K=10 in RGBXY-space)

Ours

(44 colors)

Evaluation

• Comparison to related approaches.
• Expert study with professional artists.
• See paper for the details.

20

Input [Afifi 2018] [Xu and Kaplan 2008] Direct K-means

(K=7 in RGB-space)

Direct K-means

(K=44 in RGB-space)

Direct K-means

(K=10 in RGBXY-space)

Ours

(44 colors)

Conclusion

21

Conclusion

21

• PosterChild shows:

Conclusion

21

• PosterChild shows:
• Qualitatively similar to those created by artists in a time-consuming manner.

Conclusion

21

• PosterChild shows:
• Qualitatively similar to those created by artists in a time-consuming manner.

Conclusion

21

• PosterChild shows:
• Qualitatively similar to those created by artists in a time-consuming manner.

• Easy to do palette-based recoloring on posters in real-time.

Conclusion

21

• PosterChild shows:
• Qualitatively similar to those created by artists in a time-consuming manner.

• Easy to do palette-based recoloring on posters in real-time.

• Aesthetically outperform state-of-the-art automatic posterization tools.

Conclusion

21

• PosterChild shows:
• Qualitatively similar to those created by artists in a time-consuming manner.

• Easy to do palette-based recoloring on posters in real-time.

• Aesthetically outperform state-of-the-art automatic posterization tools.

• Limitations:

Conclusion

21

• PosterChild shows:
• Qualitatively similar to those created by artists in a time-consuming manner.

• Easy to do palette-based recoloring on posters in real-time.

• Aesthetically outperform state-of-the-art automatic posterization tools.

• Limitations:
• Only allows real-time recoloring.

Conclusion

21

• PosterChild shows:
• Qualitatively similar to those created by artists in a time-consuming manner.

• Easy to do palette-based recoloring on posters in real-time.

• Aesthetically outperform state-of-the-art automatic posterization tools.

• Limitations:
• Only allows real-time recoloring.

• Slow performance on outlier removal.

Conclusion

21

• PosterChild shows:
• Qualitatively similar to those created by artists in a time-consuming manner.

• Easy to do palette-based recoloring on posters in real-time.

• Aesthetically outperform state-of-the-art automatic posterization tools.

• Limitations:
• Only allows real-time recoloring.

• Slow performance on outlier removal.

• Does not recognize the semantics of input images.

Thank You

22

• Code and GUI will be available at: https://cragl.cs.gmu.edu/

• Financial support

• NSERC

Creativity and Graphics Lab
CraGL

https://cragl.cs.gmu.edu

Thank You

22

• Code and GUI will be available at: https://cragl.cs.gmu.edu/

• Financial support

• NSERC

Creativity and Graphics Lab
CraGL

https://cragl.cs.gmu.edu

Step 1: Convex-hull based palette extraction

23

• [Wang et al. 2019] observed that convex-hull based palettes are sensitive to
outliers.

Step 1: Convex-hull based palette extraction

23

• [Wang et al. 2019] observed that convex-hull based palettes are sensitive to
outliers.

• K-means as a relaxation on the input RGB colors.

Step 1: Convex-hull based palette extraction

23

Step 1: Convex-hull based palette extraction

23

Step 1: Convex-hull based palette extraction

24

Step 1: Convex-hull based palette extraction

24

Input
Direct K-means
clustering result

Posterized image
(K-means clustering
to eliminate outliers)

Posterized image
(without K-means clustering

to eliminate outliers)

Step 1: Convex-hull based palette extraction

24

Input
Direct K-means
clustering result

Posterized image
(K-means clustering
to eliminate outliers)

Posterized image
(without K-means clustering

to eliminate outliers)

Step 1: Convex-hull based palette extraction

24

Input
Direct K-means
clustering result

Posterized image
(K-means clustering
to eliminate outliers)

Posterized image
(without K-means clustering

to eliminate outliers)

Step 1: Convex-hull based palette extraction

24

Input
Direct K-means
clustering result

Posterized image
(K-means clustering
to eliminate outliers)

Posterized image
(without K-means clustering

to eliminate outliers)

Step 1: Convex-hull based palette extraction

24

Input
Direct K-means
clustering result

Posterized image
(K-means clustering
to eliminate outliers)

Posterized image
(without K-means clustering

to eliminate outliers)

Step 1: Convex-hull based palette extraction

24

Input
Direct K-means
clustering result

Posterized image
(K-means clustering
to eliminate outliers)

Posterized image
(without K-means clustering

to eliminate outliers)

Step 2: Rough region and color assignment

25

Step 2: Rough region and color assignment

25

Input λ = 0.1 λ = 1.0 λ = 3.0

Step 2: Rough region and color assignment

25

Input λ = 0.1 λ = 1.0 λ = 3.0

min ∑
p∈I

| | fp − Ip | |2 + λ ∑
p,q∈N

| |Lp − Lq | |2

Step 2: Rough region and color assignment

25

Input λ = 0.1 λ = 1.0 λ = 3.0

min ∑
p∈I

| | fp − Ip | |2 + λ ∑
p,q∈N

| |Lp − Lq | |2

