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Problem Statement

* Create a posterized image using a discrete set of colors representing the
input image and also provided convenient handles for recoloring.
e Existing automatic posterization tools produce output quite different from artists.

* Manual approaches are time-consuming.

Photoshop’s Posterization Filter Artist's Creation
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e [E ... penalizes the ditterence between a pixel’s input color I, and its region color R,
Edata — Z ”Rp _ Ipllz
pEl

o E, irwise PENalizes neighboring pixels with different region labels L, and L.

Epairwise — Z ”Lp R qulz
P.gEN

e Overall objective function: E(f) = E,,,(f) + AE, i1 ise(f)

e J controls the clumpiness of the regions in the output.

* We solve this problem with multi-label optimization [Boykov and Kolmogorov 2001].
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* Aesthetically outperform state-of-the-art automatic posterization tools.
* Limitations:
e Only allows real-time recoloring.

e Slow performance on outlier removal.

* Does not recognize the semantics of input images.
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* [Wang et al. 2019] observed that convex-hull based palettes are sensitive to
outliers.

 K-means as a relaxation on the input RGB colors.
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